Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells.

نویسندگان

  • Srikanth Pendyala
  • Irina A Gorshkova
  • Peter V Usatyuk
  • Donghong He
  • Arjun Pennathur
  • J David Lambeth
  • Victor J Thannickal
  • Viswanathan Natarajan
چکیده

In vascular endothelium, the major research focus has been on reactive oxygen species (ROS) derived from Nox2. The role of Nox4 in endothelial signal transduction, ROS production, and cytoskeletal reorganization is not well defined. In this study, we show that human pulmonary artery endothelial cells (HPAECs) and human lung microvascular endothelial cells (HLMVECs) express higher levels of Nox4 and p22(phox) compared to Nox1, Nox2, Nox3, or Nox5. Immunofluorescence microscopy and Western blot analysis revealed that Nox4 and p22(phox), but not Nox2 or p47(phox), are localized in nuclei of HPAECs. Further, knockdown of Nox4 with siRNA decreased Nox4 nuclear expression significantly. Exposure of HPAECs to hyperoxia (3-24 h) enhanced mRNA and protein expression of Nox4, and Nox4 siRNA decreased hyperoxia-induced ROS production. Interestingly, Nox4 or Nox2 knockdown with siRNA upregulated the mRNA and protein expression of the other, suggesting activation of compensatory mechanisms. A similar upregulation of Nox4 mRNA was observed in Nox2 2(-/-) ko mice. Downregulation of Nox4, or pretreatment with N-acetylcysteine, attenuated hyperoxia-induced cell migration and capillary tube formation, suggesting that ROS generated by Nox4 regulate endothelial cell motility. These results indicate that Nox4 and Nox2 play a physiological role in hyperoxia-induced ROS production and migration of ECs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating the Expression of NOX2 and NOX4 Signaling Pathways in Rats’ Lung Tissues Following Local Chest Irradiation; Modulatory Effect of Melatonin

Lung injury is one of the major concerns for chest cancer patients that undergo radiotherapy as well as persons exposed to an accidental radiological event. Reduction/oxidation (redox) system plays a key role in lung injury via chronic upregulation of pro-oxidant enzymes. NOX2 and NOX4 are two important reactive oxygen species generating enzymes that are involved in radiation toxicity in some o...

متن کامل

ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis.

Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochond...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Role of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells

Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...

متن کامل

Direct Activation of NADPH Oxidase 2 by 2-Deoxyribose-1-Phosphate Triggers Nuclear Factor Kappa B-Dependent Angiogenesis

AIMS Deoxyribose-1-phosphate (dRP) is a proangiogenic paracrine stimulus released by cancer cells, platelets, and macrophages and acting on endothelial cells. The objective of this study was to clarify how dRP stimulates angiogenic responses in human endothelial cells. RESULTS Live cell imaging, electron paramagnetic resonance, pull-down of dRP-interacting proteins, followed by immunoblotting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antioxidants & redox signaling

دوره 11 4  شماره 

صفحات  -

تاریخ انتشار 2009